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Abstract. We propose a very simple method to determine the electrical tip-surface force in Atomic Force
Microscopes used to study the electrical properties of metallic or insulating materials; the analysis of the
measurements as well as determination of the appropriate experimental procedures requiring an analyt-
ical model of the tip-surface capacitance. The comparison of force expressions obtained by this method
with those obtained by exact derivation in the case of the sphere-infinite plane system shows very good
agreement. This method is then applied to determine the tip-surface force, the real shape of the tip being
introduced in the derivation. The obtained expression is compared to experimental and numerical data.
We emphasize that this method is very general and can be applied to any axially symmetric capacitor.

PACS. 06.30.-k Measurements common to several branches of physics and astronomy – 07.50.-e Electrical
and electronic components, instruments, and techniques – 41.20.-q Electric, magnetic, and electromagnetic
fields

Scanning microscopies have recently been used to
study the electrical properties of metallic or insulating ma-
terials, eventually coated by absorbed films. In all these
techniques, a metallic tip scans a thin sample fixed on a
conducting surface. When a potential is applied between
the tip and the underlying metallic surface, such a sys-
tem forms an axially symmetric capacitor. The tip is then
submitted to an electric force, proportional to the capaci-
tance gradient. Since this capacitance depends on surface
properties and the tip-surface distance (the cantilever-
surface contribution may be neglected), we can obtain to-
pographic and local electrical properties of the surface by
measuring the tip-surface force. However, interpretation
of these measurements as well as determination of the ap-
propriate experimental procedures require an analytical
model of the tip-surface capacitance.

Various methods have been developed to calculate the
capacitance of conductors at equilibrium. Unfortunately,
these methods are not always analytical, even for highly
symmetric systems, and numerical methods are used. Ap-
plied to the AFM tip-metallic surface case, these numer-
ical methods give the exact determination of the force,
but they do not offer the opportunity to directly discuss
the influence of the relevant experimental parameters (tip
dimension, apex radius, tip- surface distance...) on the ob-
tained measurements. To remove these difficulties, we have
developed an original analytical derivation of the electric
field created by a convex metallic system with axial sym-
metry, applied to the tip-surface system. This method al-
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lows an approximate analytical determination of the tip-
surface capacity and of the tip-surface force.

1 Description of the method and its
validation

Let us consider an axial capacitor constituted by an infi-
nite plane surface and an axial symmetric electrode (here-
after called the tip) which are respectively maintained at
the potentials V = 0 and V (Fig. 1). The vertical force
applied on the tip is given by:

Fz =

∫
s

σ2

2ε0
dS n · uz (1)

where σ is the aeral charge density on the infinitesimal
surface dS of the tip, n being the unitary vector normal
to this surface. The local charge density σ is related to the
electric field on the metallic tip surface by:

E =
σ

ε0
·

Then, to evaluate the tip-surface force Fz , it is necessary
to determine the electric field at each point on the tip.
This determination requires the resolution of the Laplace
equation taking into account the conditions imposing a
constant voltage on the metallic surfaces. An analytical
solution is not always possible, so we have developed an
analytical method which gives an approximate expression
of this field.



6 The European Physical Journal B

Fig. 1. Tip-infinite flat surface system and characteristic di-
mensions.

In our method, the first step is to identify the tip sur-
face as a superposition of infinitesimal surfaces obtained
by facetting (Fig. 2). Thus, from an electrostatic point of
view, for distances greater than the characteristic facet
dimensions, the tip surface appears as regular; since the
roughness is infinitesimal we can hope to obtain the right
expression whatever the tip surface distance. The second
step is to evaluate the electric field created between this
facetted conductor and the plane surface. To obtain this
field, we postulate that the electric field on each infinites-
imal tip surface is that which would be created by the
dihedral capacitance constituted by two infinite planes in
the same relative orientation. This is the main approxima-
tion of our model. This approximate field is introduced in
expression (1) to determine the infinitesimal force dFz and
the tip-surface force can be finally obtained by summing
all these contributions.

To illustrate this method and test its validity, we first
calculate the force between a sphere and an infinite plane
since this geometry allows a comparison between our deri-
vation and the exact one. Then we will consider the sphere
presented in Figure 3, its radius and its distance to the

Fig. 2. Facetted tip-infinite flat surface and approximate field
lines.

Fig. 3. Sphere-infinite flat surface.

planar surface being respectively denoted R and z. On
each point M(R, θ, ϕ) of this sphere we can construct an
infinitesimal surface dS = R2 sin θdθdϕ. We assume that
the electric field on this point is then equal to:

E = −
V

l(M)

where l(M) is the length of the field line of the correspond-
ing dihedral capacitor

l(M) =
θ[z +R(1− cos θ)]

sin θ
·
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Knowing the electric field we can deduce the charge den-
sity:

σ(M) = −
ε0V sin θ

θ[z +R(1− cos θ)]
·

The sphere-surface force can then be derived using rela-
tion (1). However, since the sphere and the infinite plane
are in total influence, it is more convenient to calculate
the sphere-plane capacitance to determine this force. This
capacitance is given by the following expression:

C(z) = 2πε0R

∫ π

0

sin2 θ

θ
[
z
R

+ 1− cos θ
]dθ.

The integral part I(z,R) of this capacitance cannot be
analytically evaluated. However, we can estimate its vari-
ation with distance z by surrounding this integral by two
other integrals having the same distance dependence:∫ π/2

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ < ∫ π

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ
< 2

∫ π/2

0

sin2 θ

θ
[
z
R

+ 1− cos θ
]dθ.

This inequality is justified by the fact that the charge on
the sphere is principally located on the hemisphere near
the planar surface. Moreover, we have:∫ π/2

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ < ∫ π/2

0

sin2 θ[
z
R + 1− cos θ

]dθ
= ln(1 +

R

z
)

since θ > sin θ over the interval (0, π/2) and∫ π/2

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ
>

4

π2

∫ π/2

0

θ[
z
R

+ θ2

2

]dθ
=

4

π2
ln(1 +

π2

8

R

z
) >

4

π2
ln(1 +

R

z
)

since 1 − cos θ < θ2/2 and sin θ > 2θ/π (sin θ is convex
over the interval (0, π/2)). Then, whatever the tip-surface
distance, we can write:

4

π2
ln(1 +

R

z
) <

∫ π

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ < 2 ln(1 +
R

z
).

Following this inequality, we can assume that the integral
I(z, R) can be written:

I = K ln(1 +
R

z
)

where K is a constant which has to be determined. By
introducing this relation in the expression of the sphere-
surface force given by:

Fz(z) = −
∂C

∂z

V 2

2

we obtain:

Fz(z) = 2πε0K

[
R2

z(z +R)

]
V 2

2
· (2)

To determine the constant K, we have compared the exact
and approximate solutions in the asymptotic limit z � R.
The exact expression of the force between the sphere and
the plane calculated by the image method [2] is given by:

Fz(z) = V 22πε0

∞∑
n=1

coth α− n coth nα

shnα

chα = 1 + z/R. (3)

When the sphere is very far from the surface, this last
expression can be simplified and we obtain:

Fz = πε0

(
R

z

)2

V 2. (4)

The comparison of expressions (2) and (4) gives K = 1.
Thus the final expression of the sphere-plane force is given
in our method by:

Fz(z) = πε0

[
R2

z(z +R)

]
V 2. (5)

The variations of force given by expressions (3, 5)
versus the sphere-surface distance are presented in Fig-
ures 4a and 4b respectively for (0 < z < 100 nm) and
higher distances, using R = 20 nm. Whatever the dis-
tance, very good agreement between the two derivations
can be observed. More quantitatively, the error is less than
1% for small (z/R < 0.01) and large (z/R > 4) distances,
with the maximum error (5%) being found for z about
R/3. So, we have used it to derive the tip-surface force in
an Atomic Force microscope.

2 Capacitive force associated with an axially
symmetric metallic capacitor

The tip shape and its characteristic dimensions are deter-
mined by electronic microscopy. It can be modelled as a
truncated cone ended by a spherical apex. Figure 1 intro-
duces all the geometric characteristic of this tip. We shall
now evaluate separately the apex and conic contributions.

2.1 Spherical contribution

The spherical apex is characterized by the radius of curva-
ture R and its angular aperture 2θ0. Extending the proce-
dure proposed in the previous section, the electric charge
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(a)

(b)

Fig. 4. (a) Comparison between exact and approximate forces
for (0 < z < 100 nm) and R = 20 nm; (b) Comparison between
exact and approximate forces for (10−10 m < z < 10−4 m) and
R = 20 nm.

accumulated on this apex can be calculated and its ex-
pression is

δQ(z) = 2πε0RV

∫ π/2−θ0

0

sin2 θ

θ
[
z
R + 1− cos θ

]dθ
δQ(z) = 2πε0RV Iθ0(z/R).

The usual values of θ0 are around 10◦, so we can consider
that:

sin(π/2− θ0)

π/2− θ0
<

sin θ

θ
< 1.

Then we can write:

cos θ0

π/2− θ0

∫ π/2−θ0

0

sin θ[
z
R + 1− cos θ

]dθ < Iθ0(z/R)

<

∫ π/2−θ0

0

sin θ[
z
R + 1− cos θ

]dθ ·
and

cos θ0

π/2− θ0
ln
z +R(1− sin θ0)

z
< Iθ0(z/R)

< ln
z +R(1− sin θ0)

z
·

This inequality suggests describing the apex contribution
by a capacitance given by:

Capex = 2πε0RK
′ ln

z +R(1− sin θ0)

z

the corresponding contribution to the tip-surface force is
equal to:

Fapex = πε0RK
′ R(1− sin θ0)

z[z +R(1− sin θ0)]
V 2 · (6)

To determine K ′ we consider the situation where the tip
is very close to the surface. In this case, the apex contri-
bution is dominant and can be identified with the force
exerted by the plane on a complete sphere in the same
conditions (z � R). By comparing expressions (3) and
(6), we obtain K ′ = 1. Thus the apex contribution can be
written:

Fapex = πε0R
2 (1− sin θ0)

z[z +R(1− sin θ0)]
V 2 ·

2.2 Conical contribution

We now have to calculate the conical contribution. At a
height z′, each point on the conical part of the tip is as-
sociated with l(M) given by:

l(M) = (
π

2
− θ0)MH = (

π

2
− θ0)

z′

cos θ0

the charge density at this point is then:

σ(M) =
−ε0V cos θ0

(π2 − θ0)z′

and the force contribution:

Fcone =
πε0V

2 sin2 θ0

(π/2− θ0)2

∫ zA

zB

(z′ − zC)

z′2
dz′

Fcone =
πε0V

2 sin2 θ0

(π/2− θ0)2

[
ln
zA

zB
+ zC

(
1

zA
−

1

zB

)]
.
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If we consider the particular case zC = 0 and zB = δ � zA

the cone contribution can be reduced to :

Fcone =
πε0V

2 sin2 θ0

(π/2− θ0)2
ln
H

δ
· (7)

For this particular geometry where H � δ, the usual as-
sumption is to consider the field lines as identical to those
obtained for an infinite cone. In this frame, the “exact”
expression of the force can be identified with the force
contribution which applies on the part H of an infinite
cone [3,4]. This force is equal to:

Fcone =
πε0V

2

[ln tg(θ0/2)]2
ln
H

δ
· (8)

As for the sphere-plane example, the variations of force
with tip-surface distance are similar in the exact and ap-
proximate expressions. As done above, to make precise
the approximate force expression, we identify the prefac-
tor obtained in the approximate expression with its value
in the exact derivation of the particular case. (Notice that
the prefactors present similarity for large angle θ0.) Then
the conic contribution is given by:

Fcone =
πε0V

2

[ln tg(θ0/2)]2

[
ln
zA

zB
+ zC

(
1

zA
−

1

zB

)]
. (9)

In the tip geometry, zA � zB and zC, then ln(zA/zB) ≈
− ln(zB/H) and zC/zA is neglected. So, after introducing
the continuity condition between the apex and the cone,
we obtain finally:

Ftotal = πε0V
2

[
R2(1− sin θ0)

z[z +R(1− sin θ0)]

+k2

(
ln
z +R(1− sin θ0)

H
− 1 +

R cos2 θ0/ sin θ0

z +R(1− sin θ0)

)]
where

k2 =
1

[ln tg(θ0/2)]
2 ·

For the tip used in our microscope, θ0 is small. In this
case, this last force expression can be simplified and we
obtain:

Ftotal = πε0V
2

[
R2

z[z +R]
+ k2

(
ln
z +R

H
− 1

+
R/ sinθ0

z +R

)]
.

This expression can be examined for different asymptotic
limits. When the tip is very close to the surface, z � R,
the tip-surface force varies as πε0R/z, whereas it varies as
πε0k

2 ln(H/z) for z � R. This means that the force, and
thus the images, are controlled by the apex radius near the
surface and by the tip dimensions as soon as the tip surface
distance is larger than R. Notice that these asymptotic
results correspond to the different models previously pre-
sented in the literature for a restricted tip-surface distance
range, and can be used for these particular limits [4,5].
For intermediate tip-surface distances such as those used
in AFMR, the complete expression must be employed in
discussing the experimental data.

Fig. 5. Experimental data fitted by the approximate force
expression.

3 Comparison of the approximate force with
experimental measurements and numerical
derivations

We have tested expression (9) by comparing its tip-surface
dependence with those obtained experimentally and nu-
merically. We have compared the variations of Fz(z) to
experimental data obtained by measuring the tip-surface
capacitive force between a Pt-coated Si tip and a gold
surface. All the experiments are performed under con-
trolled dry gas atmosphere. The geometric tip character-
istics (H = 20 µm, θ0 = 10◦ and R = 20 nm) are de-
termined by electronic microscopy. The tip-surface force
is measured using an atomic force microscope in the reso-
nant mode, this allows a precise force determination even
far from the surface. In our experiment, the tip is fixed
at the end of a cantilever, the tip-surface distance vary-
ing over the (0, 5 µm) range. A modulated bias voltage
V1 sinωt is then applied between the tip and the gold sam-
ple, ω being about 30 kHz. This applied voltage creates
a capacitive force Fz on the tip. This oscillating force in-
duces cantilever oscillations which can be measured using
optical heterodyne detection. Since the voltage frequency
is very far from the cantilever resonance frequency, the
vibration amplitude is simply proportional to the applied
force. A representative set of data is presented in Fig-
ure 5. These force variations can be compared to those
obtained using our expression (9) in which V = V1. To
fit the data, we must introduce the cantilever hardness
k0. Its value is not known exactly, the cantilever man-
ufacturer giving a hardness of about 50 N/m, and a fit
procedure is therefore required. The best fit is obtained
for k0 = 37 N/m in agreement with the estimated value.
This comparison shows without ambiguity that the force
expression obtained in the frame of our model can well
describe the experimental data.

Our analytical expression (9) can also be compared
to numerical derivations of the tip-surface force obtained
for the same tip. The most complete numerical procedure
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Fig. 6. Comparison between the numerical and analytical vari-
ations of the tip-surface force with tip-surface distance z: a)
numerical data, b) analytical expression.

used to evaluate this force has been recently proposed by
Belaidi et al. [6]. In their procedure, they modelled the
tip by a series of point charges, their values and positions
being calculated to obtain constant potentials on the tip
and on the surface. Comparison between their numerical
derivation and our analytical evaluation is presented in
Figure 6 for a very large tip-surface distance range. The
agreement between the two results is good; the difference
never exceeding 10%.

Thus, we have developed a very simple method to de-
termine the tip-surface force in Atomic Force Microscopes
but this method is more general and can be applied to
any axially symmetric capacitor. In this method, the tip
is decomposed into infinitesimal surfaces, the infinitesimal

contribution being similar to those corresponding to an in-
finite dihedral capacitor. This assumption is formally valid
only if the distance between the conductors is small with
respect to their lateral dimensions. Obviously this is not
the case for these infinitesimal surfaces for which the edge
effects are significant and this assumption should not be
used. However it seems that, since we are interested only
in global quantities such as the capacitance or the force
between the tip and the surface, these effects are com-
pensated and that our approximation does not introduce
significant errors. The main advantage of this expression
is that it offers the possibility of describing the variation of
the force with the tip-surface distance whatever the range
whereas the previous asymptotic method does not offer
this opportunity.
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